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ABSTRACT 

By means of generic methods, an example is given of a local (but not 
Noetherian) n-regular ring R, over which the ring of 2 × 2 matrices is not 
n-regular. Also a cyclic indecomposable (left) module over a right Artinian 
ring is exhibited, whose endomorphism ring is not local. 

Suppose R is a ring with Jacobson radical J. We say R is semilocal if R / J  is 
semisimple Artinian. A semilocal ring R is semiperfect if J is idempotent- 
lifting; one important special case is when J is nil. In particular J is nil 
when R is left n-regular, i.e. if R satisfies DCC on all chains of the form 
Ra ~ Ra 2 ~_ R a  3 ~ • • • (cf. [5] for a more detailed discussion). By [5, Theorem 
8], if R is a semiperfect ring all of  whose matrix rings are left n-regular then 
there is a version of Fitting's lemma for finitely presented indecomposable R- 

modules, leading to an analogue of the Azumaya-Krull-Schmidt decom- 

position theory for R- modules. Also these conditions are necessary for such an 
Azumaya-Krull-Schmidt-Fitt ing theory. Thus left n-regular rings have a role 

in basic module theory. 
Since the condition of left n-regularity is hard to verify, one is led to look for 

a more manageable criterion. By [5, Proposition 13] a semiperfect ring R is left 
n-regular i f J  equals the lower nilradical, leading one to ask i fR is necessarily 
left n-regular whenever J is nil. As we shall see below this is not necessarily the 
case. Section 2 provides an example of a semiperfect (non-Noetherian) ring R 

whose Jacobson radical J is nil, but R is not left n-regular; in the process we see 

that the 2 × 2 matrix ring over a left n-regular ring need not be left n-regular, 

thereby answering negatively an old question in the theory of left n-regular 

rings. In fact we give several such examples, one for which J is not locally 
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nilpotent and one for which J is locally nilpotent; the former relies on the 

Golod-Shafarevich theorem. 

In studying semiperfect rings one might ask whether the Fitting's Lemma 

route is too stringent; perhaps one could obtain a reasonable Azumaya-Kru l l -  

Schmidt  theory for arbitrary f.g. (finitely generated) modules i f  one were 

willing to prove directly that f.g. indecomposables are LE, i.e. the endomor-  

phism ring is a local ring. Thi,; question was pointed out to me by G. Abrams, 

who showed that the known f.g. indecomposables are indeed LE. In §3 we see 

an example o f  a cyclic indecomposable (left) module over a fight Artinian ring 

which is not  LE. 

§1. A matrix condition for semiperfect rings 

We start by looking for a local ring Ro whose Jacobson radical J is nil, but  for 

which R = M2(Ro) is not  left ~:-regular. Note Ro automatically is left n-regular 

since each element is invertible or nilpotent, and Ro is semiperfect since all 

local rings are semiperfect. Hence R is semiperfect. 

To construct the ring Ro we consider more generally an arbitrary ring 

R with a nontrivial idempotent  e, and let Ro be e R e .  We say an element 

r is proper  i f  we can write r := x + a + b + c (where x -- ere is invertible in 

e R e ,  a E e J ( 1  - e), bE(1  - e ) R e ,  and cE(1  -- e)J(1 - e)). Let us examine 

explicitly the conditions on the proper element r which are necessitated by 

r E R r  2. (Of course the intuit ion is to view r as the matrix (~' ~).) 

Take y in e r e  satisfying x y  = y x  = e. Clearly we must  have r = s r  2 for 

some s in R;  letting u = (1 - e)se  and v =  (1 - e)s(1 - e) (i.e. intuitively 

the "bot tom row" of  s is (uv)) we match entries in the "bot tom row" of  r and 

of  sr 2 to get 

(1) b = u ( x  z + ab)  + v ( b x  + cb),  

(2) c = u ( x a  + ac)  + v (ba  + c2). 

Multiplying each side of  (I) by y a  yields 

(3) bya = u ( x a  + abya)  + v (ba  + cbya) .  

Subtracting (3) from (2) now yields 

c - bya = ua(c  - bya)  + vc(c - bya) ,  

SO 

(1 - ua - vc )( c - bya ) = O. 
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Now ua + v c ~ ( 1  - e ) J (1  - e), the Jacobson radical o f  (1 - e)R(1 - e), so 

1 - ua - vc is invertible in (1 - e )R  (1 - e), yielding c - bya = 0, i.e. c = bya.  

We shall say r is degenerate i f  this condi t ion c = bya holds on the "entr ies"  o f r .  

Thus  we have shown that r q~ R r  2 i f  r is nondegenrate.  

§2. Computing nondegeneracy 

GENERAL FACT 2.1. I f r  is invertible and a is in J t h e n  r + a = r(1 + r -  ta) 

is invertible. 

Now let r be "proper" ,  as defined in § 1. Then  r 2 also is proper;  for example 

er2e = x 2 + ab is invertible in eRe  since ab E eJe.  Thus R r  > R r  2 > R r  3 > • • • 

i f  each power o f  r is nondegenerate.  (This is seen by noting that  

R r  > R r  2 > R r  3 > • • • iff R r  > R r  2 > R r  4 > • • • .) By the same argument  we 

need only verify r" is nondegenerate  for an infinite number  o f  n. 

View r" as ({/,"/ ~"))); note x ( 1 ) = x ,  a ( 1 ) =  a,  b ( 1 ) =  b, and c ( 1 ) = c .  

Viewing these entries as polynomials  in x ,  a ,  b, c we write 

n - I  n-3 n - 3 - i  n - 3 - i - j ( l )  
a ( n )  = Y, xn - l - j ( l ) a cJ ( i )  + X Y,, X 

j ( 1 ) = o  i ~ 0  j ( 1 ) = 0  j(2)=o 

x i a c  j(l)bxn - i - j ( 1 ) - j ( 2 ) -  3ac J(2) 

+ ~ xi(l)acJ(l)bxi(2)acJ(2)bx n-i(l)-i(2)-j(l)-j(2)-j(3)-5aCj(3) + • . . ,  

b ( n )  = ~ cJ°)bx " -  a - m ) +  ~ cJ(l)bxiacJ(X)bxn-i-j(1)-j(2)-3 

"~- X C j(l)bxi(I)aC J(2)bxi(2)ac J(3)bxn - i ( I )  - i ( 2 ) - j ( 1 )  - j ( 2 ) - j ( 3 )  - 5 .~_ . o . ,  

c (n )  = c" + ~ cJ°)bxn-J°)-J~2)-2ac jCa) + ~ c m ) b x i a c m ) b x " - i - m ) - m ) - 4 a  

+ Y, c j(~)bx" °ac J(2)bxif2)ac J(3)bxn - i ( l ) -  i ( 2 ) - j ( l ) - j ( 2 ) - j ( 3 ) -  6 a + . . . ,  

n - 2  n - 2 - 1  

x ( n )  = x"  + 2 y~ x~acJbx . - i - j - 2  
i =0 j=O 

-~- X xi(1)ac J(1)bxi(2)ac J(2)bxn-i(l)-i(2)-j(I)-j(2)-4 .~_ . . . 

(where the second sum ranges over  posit ive i(1), i(2), j (1) ,  j (2)  with 

i(1) + i(2) + j ( 1 )  + j ( 2 )  _-< n - 4.) 

Only a finite number  o f  summands  occur  in each expression, since the length 

o f  each summ a nd  as a word is n,  and the degree in a and b increases by 2 in 

each partial sum. Let us rewrite 
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x ( n )  = 

(l+~xiacJbx-i-J-Z+~xm)acJt,)bxi~Z,acA2)bx-im-it2)-Jm-J~2)-4+...)x. 

where here and in the sequel x -~ formally denotes y. We can write x ( n )  as 

(1 + d)x"  where d is the grand sum ofaU the terms in these summations. Note 

d E J and thus d is nilpotent. 

Let y (n )  be the inverse of x(n) in e r e ,  i.e. y ( n ) x ( n )  = x ( n ) y ( n )  = e. To 

compute y (n )  note that d is nilpotent so (1 + d) -~ = 1 - d + d 2 - d 3 + • - - 

and thus 

y ( n ) = y " ( 1 - d + d 2 + . . . ) = y "  1 -  Y~ 2 x ~ a c J b x - ~ - J - 2 + " "  . 
i = 0  j = 0  

To stress the appearance of y" in these expressions we rewrite 

y ( n ) =  y"(1 - d  + d 2 + ) vn(1 _ n~2 n-2-i ) . . . .  . Z xiacJby,x . - i - j - 2 +  . . . .  
i=0 j =0 

If  we opened up the parentheses we would see that each term ofy(n)  starts with 

y". Furthermore the sign of any such term alternates according to the number 

of times y" appears. 

Then we see (in ascending powers of a) that b ( n ) y ( n ) a ( n )  equals 

~cj~)bxn~j~)~j~2)~acj~2)-+-~cj~)bynxn~j~)-.(]~iacjf2~b~n-i~j(2~j(3~3acj(3)) 

+ ( ~ c JO)bxiac J~2)bxn-i-J~,)-J,2)- 3) y. ynxn-JO)- l ac JO) 

_ y~ cJO,bx.-J,)-ly. ( ~ xiacJ'Z)by"x"-i-i~2)- 2) ~ x"-Jo)-'acJO) + . . .  

and we call this entire expression (,). 

We want to determine R0 so that (*) does not equal c(n)  for suitable 

arbitrarily large n. In particular i:fc k = 0 we take n > k. Thus we shall consider 

the formal difference of (*) and c(n), which we denote as (**); in other words 

(**) equals b ( n ) y ( n ) a ( n )  - c(n)  

REMARK 2.2. A careful analysis of(**): Most of the terms of(**) formally 

cancel each other out. Indeed, let us write a typical nonzero term in (**) as a 

word in the form 

h = hi x i")" • • htxi~t)ht+ l 
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where each i ( u )  is an integer and x does not "appear" in h i  . . . .  , ht+l ,  i.e., 

hi = c J°)b , hu = ac  J~U)b for each 1 < u <= t,  ht + l = ac  j~t + l), with each j (u )  >_- O. 

We shall determine how the word h can appear as a term in b ( n ) y ( n ) a ( n )  or in 

c ( n ) .  Note that  h 4: c n since c" = O; thus t >= 1. 

Viewing h as a word, we see that for h to appear in (**), each initial subword 

of  h must be of  non-negative degree _-< n; such a word h will be called 

a d m i s s i b l e .  Conversely any admissible word can be written as a term in (**), 

according to the following procedure: 

Let h '  = hi, n '  = deg(h'), h"  = h2 xi(2). , . h t _ l x i ( t - l ) h t ,  and n " = deg(ht+l), 

(4) h = ( h ' x " - " ' ) ( y " x " ' + i ~ l ) h " x i " ) + " ' o - " ) ( x " - ' : h t + O E b ( n ) y ( n ) a ( n ) .  

I f  some i ( u )  > 0 then another term equal to h also appears in (**), with the 

opposite sign, as follows: 
If  i (1) _-__ 0 let h '  = h l x i ( 1 ) h 2 ,  n '  = deg(h'), h"  = h3 x i~3)" • • hi ,  n " = deg(ht + 1) 

and note 

(5) h = (h 'x" -" ' ) (y"x  "'+ i(2)h"x i(t) + n "  - n ) ( x  n - n -  h t  + 1). 

(5) appears in (**) with the opposite sign as in (4), since we have produced one 

extra appearance of  y".  On the other hand, i f  i ( u )  > 0 for some u > 1 and we 

have already written h in (**) then we can rewrite 

h = h ' x~U)h"  

where h ' = h I x  m ) . .  .x~tU-1)h,, and h " = h , , + l x  ~°'+1).. "ht+l ,  and let n ' =  

deg(h') and n " =  deg(h") (defining the degree formally, viewing h' ,  h "  as 

words in a,  b, c, and x). Then n = n '  + i ( u )  + n " ,  and we can obtain the 

following new term in (*) having opposite sign (since there is one extra 

appearance of  y"): 

h ' x " - " ' y " x " - " " h  ". 

Applying these arguments to each i ( u )  in turn we see that  each term h occurs 

2 " times, half  of  the t ime " + "  and half  of  the t ime " - ", where m is the 

number  of  u for which i ( u )  >= O. Consequently the terms in (**) corresponding 

to h cancel each other out unless i ( u )  is negative for each 1 _-< u =< t; we shall 

call such admissible terms "good". 

We have shown that  b ( n ) y ( n ) a ( n )  - c ( n )  equals the sum of  the good terms 

(since the others cancel). Let us reexamine such a nonzero good term. We can 

rewrite 

h = hi x -~°)" • • h t x - m ) h t + l  
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where now each i (u)  is positive. On the other hand, every subword must 

have non-negative degree < n, leading to the following conditions, letting 

mj = deg hi: 

m~<=n, i(1)=<ml, m l + m 2 - - i ( 1 ) < n ,  i ( l ) + i ( 2 ) < m l + m 2 ,  . . .  

Let us express these relations a bit differently. Write h as 

b y i O ) a c i ' ( 1 ) b y i ( 2 ) a c i ' ( 2 ) .  . . b y i ( t ) a c r ( t ) .  

Let zj = byJa and s: = 2 - j  = deg(zj); note 0 _-<j < n so 2 > sj > 2 - n for each 

j .  We see h is good iff n > sin) + i'(1) + • • • + s;(~) > 1 for all u. 

We want to prove that suitable examples have good terms (for arbitrarily 

large n) whose sum is nonzero. Actually we shall see that c is unnecesary, i.e. 

we may assume c = 0 = i ' (u)  for all u. 

EXAMPLE 2.3. A local ring/q',0 whose Jacobson radical is nil, but not locally 

nilpotent, but such that R = M2(R0) contains an element r such that r" is 

nondegenerate for infinitely many n. (Thus R is not left zt-regular.) We shall 

define r to be the matrix (~' i~) for which the previous computations are 

generic. To this end let F ( X )  de:aote the field of  rational expressions in X, i.e. 

the field of  fractions of  the polynomial ring, and expand ( X  i : i EZ} to a base 

of  F ( X )  over F. Let T be the free product of  F ( X )  with the free algebra 
F { A ,  B } in noncommuting indeterminates A, B. We view T as "generalized" 

polynomials in A and B, where the coefficients (in F(x ) )  are interspersed 

throughout the monomials. 

L e t / b e  the ideal of  T generated by A 2, B 2, Aw,  and wB for all w in ~ - ( 1 }. 
Thus 7 ~ = T/ I  is a ring in which we have 0 = z12 ~ / ~ 2  = z~w = w/~ .  Further- 

more I is a graded ideal of  T, with respect to degree in A and B. Thus 7 ~ = T / I  

is graded by degree in A and/~. 

Let Zj = BX-JA for 1 < j < 2. Then clearly their images 2j generate a free 

subalgebra 7 ~' of  7 ~. By the Golod-Shafarevich theorem (cf. [8, Lemma 6.2.7 

and Proof  of  Theorem 6.2.9]), there is an ideal P '  of  7 ~', graded in Z1 and 22, 

such that T' /P '  is infinite dimensional over F, i.e. having nonzero terms of 

arbitrarily long length. But these terms all have total degree > 0 in A, B, X. 

Let V = { BwA : w ~ ~ -- ( X -  i, X-2)}, and let P be the ideal o f  Tgenerated 

by I, V, and homogeneous representatives (in the Z~) of  the given homo- 

geneous generators of  P'. We claim that prove R0 = T/P  is the desired 

example. 

Letting a, b, x, zt, z2 denote the respective images of  A, B, X, Z~, Z2, we 
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shall prove first 7~'n/~ = P'. Indeed, since [ = 0, any element in 7 ~' n P 
has the form 

d = Y. f p, g, + h 

where f ,  gi E 7 ~, pi EP ' ,  and h E 7~I75r. Consider a nonzero "monomial" q of 

fpg~ (in .4 and B). In order for q to contribute nontrivially to a value in 7 ~, it 
must start in B. But p starts with B, s o f p  = 0 unless f ends in ~4; hence we 

may a s sumef  starts with B and ends with/i ,  and so is a word in Z~, Z2, and 17". 

But I7 = 0, so t h e f  a/'e words in Zl, 22, and likewise the g~ are words in Z~, Z2. 

But then Y. fP~gi E T'P'T '  = P', so h E 7 ~' n 7~175 r = 0, as seen by the fact that 

the {BwA: w E ~}  generate a free algebra. We conclude d = Z fp~g~ ~-P', as 
desired. 

We have proved that R0 canonically contains T'/P', and thus has nonzero 
terms of arbitrarily long length in zt and z2, which are "good" (as defined 
earlier) since the total degree of these z~ are nonnegative. 

On the other hand, let Jbe  the ideal of R0 generated by a and b. We claim J is  
nil. Indeed any element of J can be written in the form 

f(z~, z2) + w~a + bwz + ab 

where win, w2 are arbitrary elements in F(x.). Taking to the mth power yields 

f(z~, z2) m + w~af(z~, z2) " - l  + bw2f(zl, z2) m-l + (ab) m 

+ (ab)m-lwla + bwz(ab) m-~ 

(since every other placement of the w~a or bw2 yields awta or bwzb which is 0); 
taking m large enough such that f(zl, z2) m- ~ = 0 = (ab) ' -~ yields the claim. 

Finally note Ro/J is isomorphic to the field F(X), proving R0 is local, 
and we have verified all the desired properties of R0, establishing the desired 
example. Q.E.D. 

EXAMPLE 2.4. With a few modifications in the previous example we can 
construct R0 such that the (Jacobson) radical o fR  = M2(R0) is nil; thus R will 
be a semiperfect ring whose radical is nil, but not locally nilpotent, and R is not 
left n-regular. (This is the question which motivated the paper.) Our modifica- 

tions stem from the observation that it is enough to show that every set of  four 
elements in J is nilpotent (for then M2(J) is nil), and Golod in fact found a nil, 

non-nilpotent algebra N generated by 5 elements, such that every subset of  four 

elements is nilpotent, cf. [6, Theorem 6.2.9]. We repeat the notation of 
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Example 2.3, now letting T be the free product of  F(X) with the free algebra 
F(A,  B, C} in noncommuting indeterminates A, B, C. 

Let I be the ideal of T generated by A 2, B 2, AB, BC, CA, C 4, AXB, Aw, wB, 

Cw, and wC for all w in ~ - ( 1 }. Thus 7 TM = T/I  is a ring in which 

0 = A 2 = B 2 = A B  = B C  = :  C A  =  iXB = C 4 = A w  = w B  = C w  = w C .  

Let Zj =/~X-).~C 3 for 1 < j  < 5. Then clearly these Zj generate a free 

subalgebra le' of  7'. As stated above, there is an ideal P'  of  I", graded in the Zj, 
such that T'/P' is infinite dimensional over F, i.e. having nonzero terms of 
arbitrarily long length, but such that every subset of  four elements is nilpotent, 
so extending this as before to an ideal of  7" we see R0 = T/P is the desired 
example. 

A different flavor can be obtained by using an infinite number of Zj; then we 

can also disregard the Golod-Shafarevich example. 

EXAMPLE 2.5. A local ring R0 whose Jacobson radical is locally nilpotent, 
but such that M2(Ro) contains an element r for which r" is nondegenerate for 
infinitely many n. Thus R = M~(Ro) has Jac(R) locally nilpotent, but is not left 
n-regular. 

We proceed as in the first fi~ur paragraphs of Example 2.3, but instead of 
working with only a finite number of Zj, we shall use all {Zj : j  EN} and take 
V = {BwA : w ~ ~ - (X  -j : j E N} }, and let P be the ideal of  T generated by V 
and U{Z~ . . . . .  Zk} ~k+3)~. Thu,; any word of length (k + 3)! in Z~ . . . .  , Zk is 
contained in P. R0 = T/P is certainly local as before, with J locally nilpotent, 
but has the "good" term 

( ( ( z 3 z 2 ) % ) S z , ) 6 .  . . 

for arbitrarily large n, proving no power of r is degenerate. 

The reason Example 2.5 "works" is that the index of nilpotence of  

{Zl, z2, . . . ,  zk} rises so quickly (namely, on the order of k!). It would be very 
interesting to find some criterion on Y which would assure that a semiperfect 

ring is left n-regular, in analogy to the fact that T-nilpotence implies that it is 
perfect. 

§3. Finitely generated modules over perfect rings 

The object of  this section is to modify an example given in [6], to produce an 
indecomposable, cyclic module over a right Artinian PI-ring, which is not LE, 
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i.e. its ring of endomorphisms is not local. Some observations also are made in 
order to put this example in its proper perspective; in particular we see "why" 

the prior examples in the literature are LE. 
Recall a semilocal ring R is left perfect if its Jacobson radical J is T- nilpotent 

(in the sense that for every a~, a2, • . .  in J there  is a suitable n with al.  • "an = 0, 

cf. [3] or [6, Theorem 2.7.33]). Thus right Artinian implies perfect. Other 

important properties of  perfect rings: Every R- module has a projective cover, 
i.e. has the form P/Kwhere P is projective and Kis  a "small" submodule of P, 

written K ~ P  (i.e. i f K  + N = P then N = P), cf. [6, Exercise 2.8.28]; for any 

natural number t, R satisfies the descending chain condition on submodules 

spanned by < t elements, cf. [2, Theorem 2]. Incidentally [2] is an excellent 

source for results concerning perfect rings; we also use [6] for a general 

reference. 
First, let us see why all the previously recorded examples of  modules over 

left perfect rings are LE. Throughout, assume M is a f.g. indecomposable 

module over a left perfect ring R. 

LEMMA 3.1. f :  M---" M is one-to-one if f  f is an isomorphism. 

PROOF. Suppose f i s  one-to-one. If  M is generated by t elements then so is 

f i M  for each i, implyingf 'M = f +  1M for some i, by [2, Theorem 2]. Then for 
any y in M we havefiy  = f '  ÷ Ix for suitable x in M, implying y - f x  ~ k e r f  = 

0, so y = f x ,  implyingfis  onto and thus an isomorphism. Q.E.D. 

LEMMA 3.2. The following condition is necessary and sufficient for M to be 

an LE-module: I f  f + g = 1 for f ,  g: M-- ,  M then k e r f =  0 or kerg  = 0. 

PROOF. Apply Lemma 3.1 to the usual criterion for a ring to be local 

(a + b -- 1 ~ a or b is invertible). 

REMARK 3.3. I f f + g  = 1 then (ke r f )  tq (kerg) = 0. We conclude any 

uniform f.g. R- module is LE, for then either ker f = 0 or ker g = 0. 

REMARK 3.4. We can improve a bit on Remark 3.3. If  k e r r  = k e r f  i+~ 

for some i and ker f ~ 0 then f i s  nilpotent (and thus 1 - f i s  invertible, so in 

particular ker(1 - f )  = 0). 

PROOF. As in the proof of  Lemma 3.1, f JM = fJ ÷ ~M for some j ,  and taking 

j > 1 we see by the usual Fitting's lemma argument [6, Proposition 2.9.7] that 

M = fJM ~9 ker fJ, implying f JM = 0 since M is indecomposable. Q.E.D. 

Thus, if f +  g = 1 with ker f ,  ker g nonzero we see ker f <  ker f2 < ker f3 < 
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• • . ,  so defining ker ® f = [Ai ~ 1 ker f i ,  we see ker ~ f i s  not f.g.; likewise ker °° g 

is not f.g. On the other hand, ker °° f N  ker°~ g = 0 for if  f i x  = 0 = gJx for 

0 ~ x E M  then we can find y :3 0 such that fy = g y  = 0, contrary to Remark 

3.3. (Indeed we choose i, j minimal such, i.e. f i - t  x =# 0 and g J - Ix  ~ 0. Note 

that g = 1 - f commutes  with f;  replacing x by f i -~x  we may assume f x  = 0; 
now let y = g J- ix.) Thus we have shown 

REMARK 3.5. I f M i s  not LIE then Mhas  two submodules, neither of which 

is finitely generated, whose intersection is 0. 

Beating these observations in mind, we can find non-LE-modules without 

much difficulty. In [6, Exercise 2.7.22] we translated the idea of  [4, Example 

2.2] to matrices, and here it is boiled down to its essentials. 

EXAMPLE 3.6. An indecomposable, non-LE, left module over a "nice" 

right Artinian ring R. First we define R. Let D be a division algebra over a field 

F,  containing an element x transcendental over F.  Let V be a tight D-module 

of  dimension 2, having base ( y, z }, i.e. V = yD + zD. We also view V as left 

F-module, via multiplication ,~(ydl + zd2) = y(adl)  + z(ad2). Clearly V is an 
F - D bimodule, so R = (ff ~ ) is a ring. R is semiprimary (in fact fight but 
not necesarily left Artinian), and satisfies the following additional properties: 

(i) Suppose D satisfies a polynomial identity (PI). Then R is a PI-ring; in 

particular if D is commutative then R satisfies the identity (Xl X2 - X2 X~) 2. 

(ii) Suppose D is affine over F (i.e. D = F { d l , . . . ,  dr) for a finite set of  

elements dl . . . . .  dt o l D ) .  Then R is affine, generated by eli, el2Y, el2z, and 

e22d~, • • . ,  e22dt, where the eij are the standard matrix units. 

Before continuing the example we pause for a few observations. 

REMARK 3.7. Conditions (i) and (ii) cannot hold simultaneously, since 
any affine PI division algebra is finite dimensional by the Artin-Tate lemma, 

as formulated in [6, Corollary 6.3.2]. This contradicts the hypothesis that D 

contains an element transcendental over F. 

Aside. Concerning condition (ii), the theory of  semiprimary, nonartinian 

affine algebras may be void! Indeed consider the property that every affine 

division F-algebra is finite dimensional over F.  If  this holds then any affine 

semiprimary F- algebra is PI and algebraic over F,  and thus finite dimensional 

over F, so that it is left and right Artinian. For F uncountable, all affine 

division F-algebras are algebraic by a result of Amitsur (cf. [6, Theorem 

2.5.22]), so that we are left witlh Kurosh's problem for division algebras. 
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Now we construct M. Let L be the F-subspace of Vspanned by all terms of 

the form yxh and z(1 - x)h, where h EF[x]. Let M = (v~), viewed as an R- 

module by matrix multiplication. M is a cyclic R- module since it is generated 
by (°l). Furthermore Lx c_ L, so right multiplication by x yields a map f :  
V/L ---, V/L which induces a map f :  M ~ M. But y E ker f a n d  z E ker(1 - f ) ,  
so M is not LE. (If M were LE then f o r  1 - f m u s t  be an isomorphism.) 

It remains to show M is indecomposable. To see this we shall show that if 
g ' M ~ M  with gZ=g then g = 0  or g = 1. Indeed writing g(0) = (g) for 
suitable a in V/L and b in D, we see 

so a = 0. But 

( ~ ) = g ( 0 1 ) = g ( ( 0 0  01)(01))=(00 01)(~)=(0b) 

gZ(Ol)=g(Ob)=(O 0 0b)g(01)=(0 0 0b)(~)=(Oz ) 

SO b = b 2 in the division ring D, implying b = 0 or b = 1. Hence g = 0 or 

g = 1 M, as desired. 

Note that these ideas do not touch on the possibility of a Krull-Schmidt 
theory for indecomposables which are not LE. 

REFERENCES 

1. F. W. Anderson and K. R. Fuller, Rings and Categories of Modules. Springer-Verlag 
Graduate Texts in Mathematics 13, Springer-Verlag, Berlin, 1974. 

2. J. E. Bjork, Rings satisfying the minimal condition on principal left ideals, J. Reine Angew. 
236 (1969), 112-119. 

3. J. E. Bjork, Conditions which imply that subrings of semiprimary rings are semiprimary, 
J. Algebra 19 (1971), 384-395. 

4. J. E. Bjork, Conditions which imply that subrings of Artinian rings are Artinian, J. Reine 
Angew 247 (1971), 123-138. 

5. Rowen, L. H., Finitely presented modules over semiperfect rings, Proc. Am. Math. Soc. 97 
(1986), 1-8. 

6. L. H. Rowen, Ring Theory, Vols. I, II, Pure and Applied Math. Vols. 127, 128, Academic 
Press, New York, 1988. 


